Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.

Identifieur interne : 001456 ( Main/Exploration ); précédent : 001455; suivant : 001457

Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.

Auteurs : Yanbao Lei [République populaire de Chine, Japon] ; Ke Chen [République populaire de Chine] ; Hao Jiang [République populaire de Chine] ; Lei Yu [République populaire de Chine] ; Baoli Duan [République populaire de Chine]

Source :

RBID : pubmed:27300648

Descripteurs français

English descriptors

Abstract

An interesting ecological and evolutionary puzzle arises from the observations of male-biased sex ratios in genus Populus, whereas in the taxonomically related Salix, females are generally more dominant. In the present study, we combined results from a field investigation into the sex ratios of the Salicaceous species along an altitudinal gradient on Gongga Mountain, and a pot experiment by monitoring growth and energy utilization properties to elucidate the mechanisms governing sexual dimorphism. At middle altitudes 2000 and 2300 m, the sex ratios were consistent with a 1:1 equilibrium in sympatric Populus purdomii and Salix magnifica. However, at the lower and higher ends of the altitudinal gradient, skewed sex ratios were observed. For example, the male:female ratios were 1.33 and 2.36 in P. purdomii at 1700 and 2600 m respectively; for S. magnifica the ratio was 0.62 at 2600 m. At 2300 m, the pot-grown seedlings of both species exhibited the highest biomass accumulation and total leaf area, simultaneously with the balanced sex ratios in the field. At 3300 m, the specific leaf area in male P. purdomii was 23.9% higher than that of females, which may be the morphological cause for the observed 19.3% higher nitrogen allocation to Rubisco, and 20.6% lower allocation to cell walls. As such, male P. purdomii showed a 32.9% higher foliar photosynthetic capacity, concomitant with a 12.0% lower construction cost. These properties resulted in higher photosynthetic nitrogen- and energy-use efficiencies, and shorter payback time (24.4 vs 40.1 days), the time span that a leaf must photosynthesize to amortize the carbon investment. Our results thus suggested that male P. purdomii evolved a quicker energy-return strategy. Consequently, these superior energy gain-cost related traits and the higher total leaf area contributed to the higher growth rate and tolerance in stress-prone environments, which might, in part, shed new light on the male-biased sex ratios in Populus. However, no significant sexual difference was observed in S. magnifica for all the above parameters, thereby implying that the female-biased sex ratios in Salix cannot be explained in terms of the energy-use properties studied here.

DOI: 10.1111/ppl.12479
PubMed: 27300648


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.</title>
<author>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, 1838509, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, 1838509</wicri:regionArea>
<wicri:noRegion>1838509</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ke" sort="Chen, Ke" uniqKey="Chen K" first="Ke" last="Chen">Ke Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010</wicri:regionArea>
<wicri:noRegion>621010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duan, Baoli" sort="Duan, Baoli" uniqKey="Duan B" first="Baoli" last="Duan">Baoli Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27300648</idno>
<idno type="pmid">27300648</idno>
<idno type="doi">10.1111/ppl.12479</idno>
<idno type="wicri:Area/Main/Corpus">001748</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001748</idno>
<idno type="wicri:Area/Main/Curation">001748</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001748</idno>
<idno type="wicri:Area/Main/Exploration">001748</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.</title>
<author>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, 1838509, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, 1838509</wicri:regionArea>
<wicri:noRegion>1838509</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ke" sort="Chen, Ke" uniqKey="Chen K" first="Ke" last="Chen">Ke Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010</wicri:regionArea>
<wicri:noRegion>621010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duan, Baoli" sort="Duan, Baoli" uniqKey="Duan B" first="Baoli" last="Duan">Baoli Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041</wicri:regionArea>
<wicri:noRegion>610041</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Ribulose-Bisphosphate Carboxylase (metabolism)</term>
<term>Salicaceae (growth & development)</term>
<term>Salicaceae (physiology)</term>
<term>Salix (growth & development)</term>
<term>Salix (physiology)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Altitude (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (physiologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Ribulose bisphosphate carboxylase (métabolisme)</term>
<term>Salicaceae (croissance et développement)</term>
<term>Salicaceae (physiologie)</term>
<term>Salix (croissance et développement)</term>
<term>Salix (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>Ribulose-Bisphosphate Carboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plant</term>
<term>Populus</term>
<term>Salicaceae</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Salicaceae</term>
<term>Salix</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Ribulose bisphosphate carboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Plant</term>
<term>Populus</term>
<term>Salicaceae</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Salicaceae</term>
<term>Salix</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Biomass</term>
<term>Energy Metabolism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altitude</term>
<term>Biomasse</term>
<term>Métabolisme énergétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An interesting ecological and evolutionary puzzle arises from the observations of male-biased sex ratios in genus Populus, whereas in the taxonomically related Salix, females are generally more dominant. In the present study, we combined results from a field investigation into the sex ratios of the Salicaceous species along an altitudinal gradient on Gongga Mountain, and a pot experiment by monitoring growth and energy utilization properties to elucidate the mechanisms governing sexual dimorphism. At middle altitudes 2000 and 2300 m, the sex ratios were consistent with a 1:1 equilibrium in sympatric Populus purdomii and Salix magnifica. However, at the lower and higher ends of the altitudinal gradient, skewed sex ratios were observed. For example, the male:female ratios were 1.33 and 2.36 in P. purdomii at 1700 and 2600 m respectively; for S. magnifica the ratio was 0.62 at 2600 m. At 2300 m, the pot-grown seedlings of both species exhibited the highest biomass accumulation and total leaf area, simultaneously with the balanced sex ratios in the field. At 3300 m, the specific leaf area in male P. purdomii was 23.9% higher than that of females, which may be the morphological cause for the observed 19.3% higher nitrogen allocation to Rubisco, and 20.6% lower allocation to cell walls. As such, male P. purdomii showed a 32.9% higher foliar photosynthetic capacity, concomitant with a 12.0% lower construction cost. These properties resulted in higher photosynthetic nitrogen- and energy-use efficiencies, and shorter payback time (24.4 vs 40.1 days), the time span that a leaf must photosynthesize to amortize the carbon investment. Our results thus suggested that male P. purdomii evolved a quicker energy-return strategy. Consequently, these superior energy gain-cost related traits and the higher total leaf area contributed to the higher growth rate and tolerance in stress-prone environments, which might, in part, shed new light on the male-biased sex ratios in Populus. However, no significant sexual difference was observed in S. magnifica for all the above parameters, thereby implying that the female-biased sex ratios in Salix cannot be explained in terms of the energy-use properties studied here.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27300648</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>159</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.</ArticleTitle>
<Pagination>
<MedlinePgn>30-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.12479</ELocationID>
<Abstract>
<AbstractText>An interesting ecological and evolutionary puzzle arises from the observations of male-biased sex ratios in genus Populus, whereas in the taxonomically related Salix, females are generally more dominant. In the present study, we combined results from a field investigation into the sex ratios of the Salicaceous species along an altitudinal gradient on Gongga Mountain, and a pot experiment by monitoring growth and energy utilization properties to elucidate the mechanisms governing sexual dimorphism. At middle altitudes 2000 and 2300 m, the sex ratios were consistent with a 1:1 equilibrium in sympatric Populus purdomii and Salix magnifica. However, at the lower and higher ends of the altitudinal gradient, skewed sex ratios were observed. For example, the male:female ratios were 1.33 and 2.36 in P. purdomii at 1700 and 2600 m respectively; for S. magnifica the ratio was 0.62 at 2600 m. At 2300 m, the pot-grown seedlings of both species exhibited the highest biomass accumulation and total leaf area, simultaneously with the balanced sex ratios in the field. At 3300 m, the specific leaf area in male P. purdomii was 23.9% higher than that of females, which may be the morphological cause for the observed 19.3% higher nitrogen allocation to Rubisco, and 20.6% lower allocation to cell walls. As such, male P. purdomii showed a 32.9% higher foliar photosynthetic capacity, concomitant with a 12.0% lower construction cost. These properties resulted in higher photosynthetic nitrogen- and energy-use efficiencies, and shorter payback time (24.4 vs 40.1 days), the time span that a leaf must photosynthesize to amortize the carbon investment. Our results thus suggested that male P. purdomii evolved a quicker energy-return strategy. Consequently, these superior energy gain-cost related traits and the higher total leaf area contributed to the higher growth rate and tolerance in stress-prone environments, which might, in part, shed new light on the male-biased sex ratios in Populus. However, no significant sexual difference was observed in S. magnifica for all the above parameters, thereby implying that the female-biased sex ratios in Salix cannot be explained in terms of the energy-use properties studied here.</AbstractText>
<CopyrightInformation>© 2016 Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lei</LastName>
<ForeName>Yanbao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Environmental Science on Biosphere, Tokyo University of Agriculture and Technology, Tokyo, 1838509, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Baoli</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.39</RegistryNumber>
<NameOfSubstance UI="D012273">Ribulose-Bisphosphate Carboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="N">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012273" MajorTopicYN="N">Ribulose-Bisphosphate Carboxylase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27300648</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.12479</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
</noRegion>
<name sortKey="Chen, Ke" sort="Chen, Ke" uniqKey="Chen K" first="Ke" last="Chen">Ke Chen</name>
<name sortKey="Duan, Baoli" sort="Duan, Baoli" uniqKey="Duan B" first="Baoli" last="Duan">Baoli Duan</name>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27300648
   |texte=   Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27300648" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020